J. DIFFERENTIAL GEOMETRY
8 (1973) 589-597

UMBILICAL SUBMANIFOLDS WITH RESPECT TO
A NONPARALLEL NORMAL DIRECTION

BANG-YEN CHEN & KENTARO YANO

Let M~ be an n-dimensional submanifolds® of an (n 4 2)-dimensional eu-
clidean space E**%, and C be a unit normal vector field of M* in E**2, If the
second fundamental tensor in the normal direction C is proportional to the
first fundamental tensor of the submanifold M=, then M" is said to be umbilical
with respect to the normal direction C. The normal direction C is said to be
parallel if the covariant differentiation of C along M* has no normal compo-
nent, and C is said to be nonparallel if the covariant differentiation of C along
M™ has nonzero normal component everywhere.

In a previous paper [1], the authors proved that a submanifold is umbilical
with respect to a parallel normal direction C if and only if it is contained
either in a hypersphere or in a hyperplane of the euclidean space. In the pre-
sent paper, we shall study the submanifolds of codimension 2 of a euclidean
space which are umbilical with respect to a nonparallel normal direction.

1. Preliminaries

We consider a submanifold M* of codimension 2 of an (n + 2)-dimensional
euclidean space E™*?, and represent it by

(1) X_:'X(El”":sn)a

where X is the position vector from the origin of E*** to a point of the sub-
manifold M*, and {£"} is a local coordinate system in M”, where and through-

out this paper the indices 4,1, j, &, - - - run over the range {1, - - -, n}.
Put
(2) Xi=aiX: ai=a/aEi’

and denote by C and D two mutually orthogonal unit normals to M*. Then,
denoting by I, the operator of covariant differentiation with respect to the
Riemannian metric g;; = X,;-X; of M*, we have the equations of Gauss
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h
(3) VX = 8,Xs — {ﬁ}X" = h,C + kD,

where {Ii;} are Christoffel symbols formed with g;;, and %,; and k,, the second

fundamental tensors with respect to the normals C and D respectively. The
mean curvature vector is thus given by

(4) H=n"g¥,X,,

where g’* are contravariant components of the metric tensor.
If there exist two functions «, g and a unit vector field u; on the submanifold
M?® such that

(5 ' h; = agy + Puu; ,

then M" is said to be quasi-umbilical with respect to the normal direction C.
In particular, if 8 = O identically, then M* is umbilical with respect to the
-normal direction C. If M* is umbilical with respect to the mean curvature
vector H, then M" is said to be pseudo-umbilical.

The equations of Weingarten are given by

(6) VJC == —hjiXi + ljD Py
(7) VJD=—kJ7'XI_—IJC,

where h;t = h;g*, k% = k;g*"* and [; the third fundamental tensor. The
normal vector fields C and D are said to be parallel or nonparallel according
as the third fundamental tensor vanishes or never vanishes.

We also have the equations of Gauss, Codazzi and Ricci respectively :

(8) Kes® = hehy, — hPhy + kitkye — kiiky;
(9) Vihs — Vs — by + Ly = 0,
(10) Viksi — Vikes + lohys — Ly = 0
(1) Vil — Vs + hykit — Bkt =0,

where K, ;;* is the Riemann-Christofel curvature tensor.
Denoting the Ricci tensor and the scalar curvature respectively by K;; = K, ;;¢
and K = g#*K,;, we define a tensor L;; of type (0, 2) by
12 L= 23t _+ __ 2%k
12 ’ n—2+2(n—-1)(n—2)

The conformal curvature tensor C,;;* is then given by
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(13) Cisi* = Ky + 0L, — 8%Ly; + Li"85: — L 8us »

where §* are Kronecker deltas, and L,* = L,,g"*.
A Riemannian manifold M™" is called a conformally flat space if we have

(14) ijz'h =0 s
(15) Viji - Viji == 0 .
It is well-known that (14) holds automatically for » = 3, and (15) is a
consequence of (14) for n > 3.
2. Submanifolds umbilical with respect to a normal direction

In the sequel, we always assume that C and D are two mutually orthogonal
unit normals to M™* in E"*2,

Theorem 1. If a submanifold M of codimension 2 of a euclidean space
is umbilical with respect to a nonparallel normal direction C, then M™ is quasi-
umbilical with respect to another normal direction D.

Proof. We assume that M* is umbilical with respect to a normal direction
C, and C is nonparallel. Then we have

16) hj; = agy » L+0,
« being a function. Then from (9) and (16) it follows that
amn x8js — A8k — ks + Likpy =0,

where «;, = 3. Transvecting ¥ to (17) and I* to the resulting equation, we
obtain

(18) oy + ki lt = el + kU, D), ,
where
k(l,D) = kil F=1Lil.
Transvecting g* to (17) gives
a% a; + kplt = —(n — 2ay; + k'l ,
from which by transvecting I/ we obtain
20) (n — Vet + k(1,0 = k' .
By eliminating «; + k;,I from (18) and (19), and using (20) we easily find
1) o, = X, .
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Substitution of (21) into (19) and use of (20) yield immediately
22) kBt = 7%, DI .

Transvecting I* to (17), and substituting (21) and (22) into the resulting
equation, we have

(23) ky = 2g; + plil;
where
(24) A=l p= kD — al)/l = (k' — 0D/l

by (20). This proves the theorem.
Proposition 2. Under the hypothesis of Theorem 1, we have

25) a;, = ;.

This proposition follows immediately from (21) and the definition (24) of 4.

3. Conformally flat spaces of codimension 2

The purpose of this section is to prove

Theorem 3. If a submanifold of codimension 2 of a euclidean (n + 2)-
space is umbilical with respect to a nonparallel normal direction C, then it is
conformally flat.

Proof. Since the submanifold is umbilical with respect to the normal direc-
tion C and C is nonparallel, we have

hy: = agy; I;#0.

We consider the cases n > 3 and n = 3 separately.
Case 1: n > 3. By substituting (16) and (23) into (8), we find

26 Kis* = (o + D)3l8s: — 3)8e)
+Apl(3¢l; — 3l + (gy: — Lige)l'],

from which follow

27 Ky =1{n— D@+ ) + 2pllgys + (n — 2)2pdyl;

(28) K=nn— 1)+ 2) + 2(n — Dapl .

Thus from (12), (27) and (28) we have

(29) Ly = —3@ + g — eyl .

Substituting (26) and (29) into (13), we easily find that the conformal
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curvature tensor C,;;* vanishes identically. This shows that the submanifold
M™ is a conformally flat space for n > 3.

Case 11: n = 3. Substituting (16) and (23) into (10), and using (11) we
obtain

2851 — A8k + plily — pilidy + plV

(30)
— pl Vil + Lag;, — Liagy; =0,

Whel'e 2]‘: == akl and #k = ak#.
Transvecting [* to (30) gives

le‘gjz- - 2.111 + ‘ull['ljli - ‘ujlzlz + /,lljlkali

(3D
- ,’llejli -+ lzagji - dljli =0 5

which shows that xF ;I; is of the form

(32) wVil; = pgy + qil; + qil;
where
(33) p=iLl'/F+ a,

since pF 41, is symmetric by (11).
Substituting (32) into (30) we find

(2 + (@ — pilg;: — (25 + (a — p)jlgy;
+ (ly — pile + @ul; — g3, =0,

from which follow
(34) e+ @—-pL=0,
(35) (e + @)l; — (s + gl = 0.
From (33) and (34) we find
(36) A = 174,01, .
(35) implies
37 w+a;=rl,
r being a function. Substituting (33) and (37) into (32) gives
(38) W ily = (LI P + a)gye — (il + ply) + 2rl; .
Thus from (25), (29), (36), (38), by a straightforward computation we ﬁnd
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Viji—Viji=0’

which shows that M™ is a conformally flat space. Consequently we have com-
pletely proved the theorem.

4. Locus of (n — 1)-spheres

The purpose of this section is to prove

Theorem 4. If a submanifold of codimension 2 of a euclidean space is
umbilical with respect to a nonparallel normal direction C, then it is the locus
of (n — 1)-spheres, where an (n — 1)-sphere means a hypersphere or a hyper-
plane of a euclidean n-space.

Proof. Let the submanifold M™ be umbilical with respect to the normal
direction C, and C be nonparallel. Then the formulas in § 2 and § 3 are all
valid. Since Vi, — V1, = 0, the distribution [,dx‘ = 0 is integrable. We re-
present one of the integral manifolds M"~* of this distribution by §* = &*(»%),
and put

B*=23,8*, Nt=10I"/l, §,=23/dp®,
8w = BBy'g;i » V.By* = H,N*
V.B,* denoting the van der Waerden-Bortolotti covariant differentiation of B,*
along M™~':

[k

where { 4! are Christoffel symbols formed with g.,, and H., is the second
ch

fundamental tensor of M"~!, Here and in the sequel, the indices a, b, c, -
run over the range {1, --.,n — 1}. From Proposition 2 and (36) it follows

that along M*"!

39 « = const.

(40) A = const.

respectively. Now putting

41 X, = 0, X = B,*X, ,

we have, in consequence of (3),

“2) VX, = H,N'X; + B./B,"h;,C + k;;D)
= ageyC + A8ceD + He,N

where N = N'X,.



UMBILICAL SUBMANIFOLDS 595

From (6) it follows that
V.C = BJV,C =B (—aX; + 1,D),
that is,
43) Ve = —aX, .
Similarly, from (7) and (23) we have
V.D = BJV;D = BJ(—iX; + piX; + 1,C),

that is,
(44) | PD = —iX, .
We also have
VN = P(NX,) = (—H5B)X; + BN X))
= —HsX, + B N'ag;;C + (4g;; + pl)D],
that is,
45) PN = —HOX, .

From (38) it follows that
BB, (¢l 1) = (41'/F + a)BB,'g;: ,
which implies
e (.B,Y) — LV Bl = (AP + a)ge, »
that is,
wHy = ~A1E + a)ge -

Let U denote the open subset of M in which g # 0, and V the interior of
M= — U. Then from (16) and (23) we see that V is totally umbilical in the
euclidean (n + 2)-space E**!, so that every component of V' is contained
either in a hypersphere of E**? or in a hyperplane of E**2. Thus the closure
of V.= M — U is a locus of (n — 1)-spheres. Since on the subset U we have
H,., = vg.,, v being a function, (45) becomes

(46) VN = —vX.,

from which follows
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47 v = const
so that
(48) Vch = agcbc + RgcbD + ”gch 2

a, 4, v being constants. Thus if 4 % 0, then M*~! is an (» — 1)-sphere. This
implies that U is also the locus of (n — 1)-spheres. Hence the proof of the
theorem is complete.

S. h; = ag;; with ¢ = constant

In this section we shall study submanifolds of codimension 2 of a euclidean
space, which are umbilical with respect to a nonparallel normal direction C
with h;; = ag;; and « = constant. The main results are the following two
theorems.

Theorem 5. If a submarifold of codimension 2 of a euclidean space is
umbilical with respect to a nonparallel normal direction C with h;; = ag;; and
« = constant, then the submanifold is of constant curvature o-.

Proof. Suppose that M* js umbilical with respect to a normal direction C,
h;; = a, a = constant and C is nonparallel. Then

(49) a; =0, l;+0,
which reduces the first equation of (24) to
(50) 1=0.
Substitution of (50) into (23) gives
(51) hy; = ag;; kj, = plyl; .
Thus from (8) and (51) we obtain
Kei = o*(3l85: — 048

which proves the theorem.

Theorem 6. If a submanifold of codimension 2 of a euclidean space is
geodesic with respect to a nonparallel normal direction C, then the submanifold
is the locus of (n — 1)-planes. In particular, if the submanifold is complete,
then it is a cylinder.

Proof. If the submanifold M™ is geodesic with respect to the normal direc-
tion C, and C is nonparallel, then

(52) hj; =0, l;#0,

so that
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(53) a=20, Ai=0,
which reduces (30) to
(54) iy — bl + Wl l, — p Vil = 0.

As we see in the proof of Theorem 4, the distribution /,dx* = 0 is completely
integrable. 1f we represent one of the integral manifolds #47~! of this distribu-
tion by &* = £*(»%), and put

Bt =06,¢*, N:=1I*/l, F.B," = H,N*,
then transvecting B,*N7B,* to (54) we find
plNB B (F 1) =0,
that is,
(55 pPHgy = 0.

Let U denote the open subset of M™ in which x % 0, and V the interior of
M= — U. Then we see from (16), (23) and (50) that V is totally geodesic in
E™*%, so that every component of V' is contained in a euclidean n-space in
E*** Thus V is the locus of euclidean (n — 1)-spaces. Since H,, = 0 on the
subset U, we have V X, = 0, which implies that M”~! is contained in a eu-
clidean (n — 1)-space. Consequently the submanifold M™ is the locus of
euclidean (n — 1)-spaces.

If the submanifold is complete, then by the flatness of the submanifold we
see that M* is a cylinder. This completes the proof of the theorem.
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